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Abstract

This paper proposes an architectural blueprint for a multi-agent AI system that supports ESG-tracked
energy trading on a decentralised DAG-based ledger. The goal is to integrate verifiable environmental, social
and governance attributes into the core logic of energy transactions, rather than treating ESG as an external
reporting layer. The envisioned system links Industrial Internet of Things (IToT) devices of energy producers
and grid operators to smart contracts that are stored in a DAG structure with fine-grained timestamping
and geolocation. Specialised Al agents are able to read, write and execute these smart contracts, enriching
them with real time production data, grid conditions and ESG metrics associated with different energy types.
On top of this contract and data layer, coordinating agents manage energy trading and allocation. Game
theoretic mechanisms based on Nash equilibrium guide bidding, pricing and matching routines under both
economic and ESG constraints. Selected agents can act as automated market makers that provide liquidity
and price discovery for ESG-differentiated energy products.

The paper focuses on the entire chain from IloT-enabled energy producers, through the DAG-based
contract and data layer, up to Al-driven trading and allocation. Its main contribution is an Al-centric
reference architecture that embeds verifiable ESG tracking and automated compliance into this end-to-end
flow while enabling efficient coordination of energy flows in industrial energy systems.

Keywords: artificial intelligence, multi-agent systems, energy trading, ESG tracking, DAG-based ledger,
smart contracts, Industrial IoT, automated market making, Nash equilibrium

1 Introduction

Decarbonisation targets, volatile energy prices and regulatory pressure on environmental, social and governance
(ESG) reporting increase the demand for verifiable, machine-readable information on how energy is produced,
transported and traded [1, 2|. Existing ESG disclosures often rely on heterogeneous data sources and manual
aggregation, which leads to fragmented and weakly auditable information [1, 3|. Industrial energy systems al-
ready employ extensive IoT and IIoT infrastructures for monitoring and control, yet these data streams are only
partially integrated with ESG reporting and trading processes |4, 5]. Blockchain platforms and smart contracts
are increasingly investigated for energy applications, including peer-to-peer trading, certificate management and
automated settlement [6, 7]. ESG-focused architectures combine these technologies with sensor data to support
tamper-resistant, token-incentivised reporting and traceability |3, 1]. Most existing work, however, treats data
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acquisition, market interaction and decision support as largely separate layers, rather than analysing how artifi-
cial intelligence can coordinate operational and trading decisions across the full energy value chain. The growing
penetration of renewable resources such as wind, solar photovoltaics and battery storage intensifies variability
and forecast uncertainty, which complicates operational planning and market participation [8]. Electricity is
traded across several short-term markets with distinct time horizons and rules, typically including day-ahead,
intraday and imbalance stages that jointly determine the value of flexibility and forecasting quality |9, 10, 11].

In the Day-Ahead Market (DAM), producers submit hourly bids for the following day based on expected genera-
tion and demand, and prices result from market-clearing mechanisms that match aggregate supply and demand
[9, 10]. A simplified expression for the clearing price in hour ¢ is

Pricepa; = Zz Bid; (t) ) Ql'lantityZ' (t) , (1>

’ > ; Quantity,(¢)

where i indexes market participants, Bid;(t) is the price offer of participant ¢, and Quantity,(¢) the corresponding
quantity. Forecast errors in generation or consumption directly affect bidding decisions and thus financial
outcomes. In the Intraday Market (IDM), participants adjust their positions close to real time in response to
deviations from Day-Ahead schedules, outages or stochastic renewable output [11, 8]. The imbalance in hour ¢
can be written as

Imbalance; = ActualGeneration; — ScheduledGenerationy, (2)

where ActualGeneration; denotes measured production and ScheduledGeneration; the quantity committed in
the DAM. Positive imbalances represent surplus energy that can be sold intraday, while negative imbalances
require additional procurement at potentially unfavourable prices, which increases the economic value of flexible
assets such as batteries and controllable loads [8].

For battery storage systems, revenue generation often relies on arbitrage opportunities between market segments,
where storage operators buy energy during low-price periods and sell during high-price periods [12, 13]. The
profit from charging and discharging a battery during a given period ¢ can be written as

Profity = (Pricegey,s — Pricepyy +) - EnergyTransferred,, (3)

where Pricege; and Pricey,, denote the selling and buying prices at time ¢, and EnergyTransferred, is the
amount of energy moved through the storage system.

Beyond economic objectives, producers are increasingly required to comply with environmental, social, and
governance (ESG) criteria, frequently operationalised as composite scores with indicator-specific weights [2, 1].
An overall ESG score can be defined as

ESG_Score = wgFE + wgS + waG, (4)

where E, S, and G represent environmental, social, and governance indicators, and wg, wg, and wg are their
respective weights. In digital trading architectures, smart contracts and Al agents can implement minimum
thresholds Ein, Smin, Gmin as hard constraints on operational and portfolio decisions |3, 1]:

Many renewable energy producers still access short-term electricity markets through third-party marketers,
which introduces commission costs, information delays and portfolio-level trading strategies that often ignore
asset-specific flexibility. ESG-related data, certificates and regulatory compliance steps are handled in parallel,
largely manual workflows that remain decoupled from bidding and dispatch decisions. These structural frictions
motivate decentralised, producer-centric architectures in which Al agents represent individual assets, interact
directly with day-ahead and intraday markets, and execute trades through smart contracts on a DAG-based
ledger that embeds ESG constraints into the transaction logic.



B SWISSI INSTITUTE FOR Al

2 Research Gap

Existing work on digital energy trading tends to specialise in three directions. First, there is a large body of
research on market design and pricing mechanisms for wholesale and joint energy-reserve or energy—ancillary
service markets, often formulated as equilibrium or bilevel optimisation problems and used to study strategic
bidding by generators, retailers and flexible resources [14, 15, 16, 17, 18]. Second, multi-agent control and
optimisation methods have been applied to microgrids and integrated energy systems, where agents represent
distributed generators, storage units and loads and coordinate real-time scheduling based on local measurements
and IToT data streams [19, 20, 21, 22|. Third, distributed ledgers and smart contracts have been explored as
infrastructures for recording energy transactions, peer-to-peer trading and renewable energy certificates; recent
surveys and systematisations analyse smart-contract design patterns, performance and open issues in energy-
sector applications, including DAG-style ledgers and block-free architectures for high-frequency trading 23, 24,
25,7, 26, 27]. ESG-related work builds mainly on this last strand: blockchain and smart contracts are proposed
as tamper-resistant layers for ESG reporting, certification and audit trails, often in combination with IoT-based
data collection, but typically without tight coupling to operational control of physical assets or market-clearing
algorithms [28, 29, 30, 31, 32|. Across these literatures, multi-agent Al, IIoT data flows, smart contracts
and distributed ledgers are usually treated as loosely coupled components rather than as a single, end-to-end
architecture, and ESG objectives appear as reporting outputs instead of first-class constraints in agent policies
and trading logic. Existing reviews highlight fragmentation and the predominance of proof-of-concept platforms
rather than deployable reference architectures, which leaves a gap for designs that show how ESG-tracked
energy, automated compliance checks and strategic interaction between agents can be combined in a technically
implementable system, in particular when using DAG-style ledgers as the transaction backbone [23, 24, 25, 7,
30].

3 Contribution to the Field

This paper proposes an Al-centric reference architecture for ESG-tracked energy production and trading on
a decentralised DAG-based ledger. The architecture spans IloT-enabled producers and grid operators, which
provide measurements and asset states, a DAG-based contract and data layer that stores timestamped and
geolocated smart contracts, and Al agents that coordinate trading, allocation and liquidity provision. Within
this pipeline, the paper specifies agent roles with explicit responsibilities and interaction patterns: agents that
read, write and execute smart contracts; agents that aggregate and transform IloT data into ESG-relevant
indicators; and agents that participate in trading routines and pricing schemes subject to ESG and system-
level constraints. Strategic interaction between these agents is organised through game-theoretic coordination
mechanisms based on Nash-equilibrium concepts, so that economic incentives and ESG objectives can be encoded
directly in agent policies. The contribution lies in making the links between multi-agent Al design, contract
structures and ledger primitives explicit, and in providing an extensible architectural blueprint that can guide
implementation and evaluation of ESG-tracked energy trading systems in industrial settings.

4 Research

Building on the gap identified above, we propose a two-level approach that distinguishes between the market
game played by stakeholder-controlled participants and the multi-agent Al systems that implement their decision
policies on a decentralised DAG-based ledger. At the market level, short-term electricity trading is represented
as a non-cooperative game between producer portfolios, grid operators, aggregators, automated market makers
and large consumers, with Nash equilibrium as the benchmark for strategic interaction. At the implementation
level, we specify an Al-centric reference architecture in which IToT-enabled assets feed data into a DAG-based
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smart-contract layer, and stakeholder policies are executed by agents under ESG and regulatory constraints. We
instantiate this architecture in detail for a producer-side decision system, since producers combine direct access
to physical assets with strong exposure to price volatility and ESG requirements. In this instantiation, a multi-
agent Al system coordinates specialised agents for forecasting, bidding, storage control and ESG compliance
on the basis of shared data from the DAG ledger and IIoT infrastructure. We also outline a complementary
design for an automated market maker and order-matching service, which appears as a single participant in the
market game while internally using multi-agent Al to manage liquidity provision, price updates and congestion-
aware matching. The remainder of this section first formalises the market game and the associated ESG-aware
objective and constraints, then presents the reference architecture, followed by the producer-side multi-agent
system and the automated market maker design.

4.1 End-to-end physical and value flow

We consider a discrete time horizon 7 and a set of nodes Mppys in the physical system (for example grid zones or
connection points). For each node n € Nphys and time t € T, let G+ denote the electrical energy generated by
local assets, Ly ; the electrical load, Bﬁl{lt and Bgi; storage charging and discharging, C),; curtailed generation,
Fy—m, the energy flow from node n to node m, and ¢, ; network losses.

A simplified nodal balance for each (n,t) is
Gn,t - Cn,t + B’S,llsf - sz},lt + Z Fm%n,t - Z Fn%m,t = Ln,t + fn,t- (6)
m#n m#n

Collecting all physical variables in a vector x gives the compact form
Aphysx = bphyS7 0<z<uz, (7)

where Aphys and bpnys encode network constraints and Z denotes capacity limits.

On the market side, let M be the set of trading venues (for example day-ahead, intraday, balancing). For each
market m € M, time ¢ € 7 and node or zone z, let P, .; be the market price and Q..+ the net quantity
traded by participant p (positive for net sales, negative for net purchases). The financial payoff of participant p
from energy trading is

Hznergy(s’ -T) = Z Z Z Pm,z,t(sv .Z‘) vamvzyt(s’ 33‘), (8)

meM z teT

where the dependence on (s, ) reflects that prices and cleared quantities result from the joint strategies s and
the physical state x.

Let ESG(z) denote a vector of ESG indicators computed from IIoT measurements and contract metadata on
the DAG-based ledger, and let e be minimum ESG thresholds. The end-to-end chain is subject to

ESG(z) > e, (9)

which links physical operation, trading outcomes and ESG performance.

4.2 Stakeholders, participants and motives

Let K denote the set of stakeholder groups (for example producers, grid operators, aggregators, large consumers,
regulators, ESG auditors and infrastructure providers). Each stakeholder group k& € K controls one or more
market participants collected in a set P. For each participant p € P, we define a payoff function of the form

up(s, z) = IEP8Y (s, ) — Costy(s, z) — Dy(ESG(x)), (10)

4
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where Cost,, covers operational and contractual costs, and I'), encodes ESG-related penalties or incentives, for
example through higher financing costs, fees or rewards linked to ESG performance.

At an aggregate level, a system-level objective can be written as a weighted combination of stakeholder utilities
and ESG penalties

W(s,x) = Zwk Uk(s,z) — Ag E(s,x) — As S(s,x) — Aqg G(s, ), (11)
kel

where Uy, is the utility of stakeholder group k, E, S and G measure deviations from target levels for environ-
mental, social and governance metrics, and wg, Ag, Ag, Ag > 0 are weighting parameters.

4.3 Market game and Nash equilibrium

The strategic interaction between market participants is modelled as a non-cooperative game on top of the
DAG-based ledger. Let S, be the strategy set of participant p € P and S = HpeP Sy, the joint strategy space. A
strategy profile is s = (sp)pep € S, with s_, denoting the strategies of all participants except p. Each participant
seeks to maximise its payoff u,(s,x) as defined in (10), subject to the physical and ESG constraints (7) and (9).

A strategy profile s* € S is a Nash equilibrium [33] if no participant can unilaterally improve its payoff,

up(sy, 5%, 2") > up(sp,s*,,2%) Vs, €8, VpeP, (12)
where z* is the physical state induced by s* through (7) and (9). In the proposed architecture, each participant
p is implemented by one or more Al agents that operate on the DAG-based ledger and smart-contract layer and
that learn policies intended to approximate such equilibrium strategies while respecting ESG and regulatory
constraints.

4.4 Al Agent roles and ontology

In the AT architecture, each market participant p € P is implemented by one or more Al-based decision services.
We refer to these services as Al agents and use a common ontology of roles across participants:

e Data/state agents ingest IIoT measurements, on-chain transaction data and external signals, and maintain
a consistent internal state that other agents can query.

e Forecasting agents map historical and real-time data to probabilistic forecasts of generation, demand,
prices and network conditions over the relevant horizons.

e Decision agents (for example bidding, scheduling and storage-control agents) transform forecasts, risk
preferences and ESG constraints into actions such as market orders, dispatch schedules or curtailment
decisions.

o ESG and compliance agents compute ESG indicators from IloT and contract metadata and enforce regu-
latory and contractual constraints when other agents propose actions.

These roles appear in different combinations for different participants. In the following, we focus first on the
producer-side decision system and then on automated market making. In both cases, agents read from and
write to the DAG-based ledger: the ledger provides a shared, tamper-evident source of truth for trades, contract
states and ESG metadata that all agent roles can access.
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4.5 Producer-side decision system

From the viewpoint of the market game, an IloT-enabled energy supplier or producer aggregator is represented
by a single market participant pP™ € P that controls a portfolio of physical assets. Let AP be the set
of generation and storage assets operated by pP™9, each connected to a node n(a) € Nphys For each asset
a € AP and time ¢t € T, let Gg,¢ denote electrical output, Cy; curtailed output, and B t and BY storage
charging and discharging decisions where applicable. These variables contribute to the nodal balances in (6)
and to the compact network constraints (7). The producer also submits orders to the set of short-term markets

M, with Q%fﬁt denoting its net traded quantity in market m at zone z and time ¢.

The producer’s economic motive is to obtain revenue from selling energy and flexibility while covering operating
costs and respecting contractual and ESG requirements. Its trading payoff can be written as

MRE (s,2) = Y D> Pzl 0) Qs (s,), (13)

meM z teT

and its total payoff takes the form
upprod (8, .’/U) - H;;S;%y(s, f[f) - Costpprod (.%') - I‘pprod(ESG(x)), (14)

where Cost,proa covers fuel, maintenance, start-up, balancing and contract-related costs, and I'jproa captures
ESG-related penalties or rewards, for example through certificate revenues or financing advantages.

At the level of the producer-side decision system, the induced optimisation problem can be expressed as

max upprod(spprod 5 8_pprod y ZE) (15)
Spproch xpprod

subject to:
Aphysm = bphyS7 0<z<r=x

ESG(z) > e
SC_consistency(s pmd,x) =0

prod 2 : d1s
Qm,zt Qbamzt GataBata atvca,t) Vm,z,t,

acAprod

where s,proa denotes the strategy components controlled by the producer, xproa the subset of physical variables
related to its assets, and s_poa the strategies of all other participants. Constraint (16) enforces physical
feasibility, (17) enforces ESG thresholds, and (18) requires consistency between producer strategies, smart-
contract logic and ledger updates. The mapping (19) links asset-level operational decisions to market orders via
allocation functions ¢gq () that implement the producer’s internal hedging and portfolio allocation rules. In
the proposed architecture, sjproa and x,proa are implemented by a multi-agent Al system whose Al agents (for
forecasting, bidding, storage control and ESG compliance) operate on IIoT data and DAG-based smart contracts
to approximate solutions of (15)—(19).

To connect this payoff to the day-ahead and intraday formulations, we decompose the trading term into con-
tributions from the Day-Ahead Market (DAM) and the Intraday Market (IDM). Let QpDerZ , and Q%gojt denote
the net quantities that the producer clears in the DAM and IDM, respectively, at zone > and time t, and let
Pricepa .+ and Pricep .+ be the corresponding clearing prices (with Pricepa .+ consistent with (1)). The trading

payoff in (13) can then be written as

H;Eff?y(s x Z Z Pricepa (s, x) Drzdz A(s,m) + Z Z Pricerp . +(s, z) Q%Ogt(s x). (20)

z teT z teT
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Imbalances between scheduled and actual generation, as defined in (2), determine how much of the position is
adjusted in the IDM and through balancing mechanisms, and therefore how strongly the producer is exposed to
intraday and imbalance prices.

Battery storage units in AP™9 provide an additional degree of freedom. For a storage asset at time ¢, charging
and discharging decisions (ng,Bg}f) imply an energy transfer EnergyTransferred,, and the arbitrage profit
between two price levels (Pricepyy s, Pricesen) follows the local relation in (3). In the portfolio-level payoff

1S a ears as € contribpution or storage-dariven traaes to an , togetner wi asSsocClate
20), this app the contribution of storage-driven trades to Qs® , and QY | together with iated

efficiency losses and degradation costs in Costyprea (7). The storage-control component of the producer-side
decision system uses these spreads between DAM and IDM prices, and between low and high intraday prices,
to schedule charging and discharging such that the overall payoff (14) is improved while respecting the physical
and ESG constraints.

4.6 Multi-agent AI system for producer-side decision making

From the perspective of the producer, the optimisation problem (15)—(19) involves heterogeneous tasks: forecast-
ing generation and prices, scheduling assets, forming bids in multiple markets, managing storage and enforcing
ESG and contractual constraints. A monolithic control system becomes difficult to design, maintain and verify
under these requirements.

We propose that the producer implements its strategy components s poa through a multi-agent Al system in
which specialised Al agents act on shared data from I1oT infrastructure and the DAG-based ledger. The purpose
of this system is to approximate high-quality solutions of (15) in real time, adapt to changing market and system
conditions, and provide an auditable link between decisions, on-chain transactions and ESG indicators. The
producer-side multi-agent system is structured into specialised roles:

e Data and state aggregation agent. This agent ingests IIoT measurements from assets in AP™? (for example
power output, state-of-charge, availability) together with on-chain information from the DAG ledger, such
as executed trades, contract states and recent price paths. It maintains a consistent internal state that
other agents can query.

e Forecasting agent. This agent combines weather data, historical IIoT measurements and market informa-
tion to generate probabilistic forecasts of generation, load and prices for the relevant markets and zones,
aligned with the DAM and IDM horizons. Its outputs feed into bidding and storage decisions.

e Bidding and scheduling agent. This agent maps forecasts, risk preferences and ESG constraints into DAM
and IDM orders QpDerdZt and Q%r)ojt, as well as internal production and curtailment schedules for assets in

APd Tt implements producer-specific hedging and portfolio allocation rules consistent with (19).

e Storage-control agent. For assets with storage capabilities, this agent schedules charging and discharging
actions (BGCL]%, Bflhts) to exploit price spreads between low and high price periods as captured in (20) and

(3), subject to technical limits and ESG constraints.

o ESG-compliance agent. This agent computes ESG indicators from IIoT data and contract metadata on
the DAG, evaluates them against thresholds e, and enforces these bounds in the producer’s decisions by
constraining admissible actions and adjusting cost and penalty terms in (14).

All agents read and write to the DAG-based ledger through smart contracts. The ledger serves as a shared,
tamper-evident source of truth for executed trades, contract states and ESG-relevant metadata, and as a con-
firmation layer for actions taken by the producer-side agents. In the following, we abstract from algorithmic
details and summarise the structure of the producer-side multi-agent system in terms of agent roles and data
flows, as shown in Fig. 1.
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Producer market participant
pprod

'

Decision agents:
bidding, scheduling, storage
> I <

Data / state agent | ESG / compliance agent

Y

Forecasting agent

1 IIoT assets | | DAG-based ledger !
‘  (trades, contracts, ESG metadata) |

Figure 1: Ontology of the producer-side multi-agent AI system. The producer market participant pP*d is implemented
by AI agents in distinct roles that operate on shared data from IIoT assets and the DAG-based ledger.

Trading and scheduling decisions proposed by the bidding and storage-control agents are submitted as smart-
contract transactions, while the data aggregation and ESG-compliance agents continuously monitor on-chain
events to update their internal state.

In practice, the producer-side multi-agent system relies on established methods from stochastic optimisation and
reinforcement learning. Scenario generation and uncertainty quantification for renewable production and prices
can be handled via Monte Carlo simulation [34, 35|. Given stochastic processes for prices P, and generation Gy,
the forecasting agent draws N scenarios

{(Pt(n)v ng))teT}nNzl’ (21)
and approximates expectations in (14) by the sample average
N
Etpproa (s, )| =~ N;upprod(s,x(")). (22)

This leads to a sample average approximation of the producer problem

N
1
slzi)?jj N n;l upprod(spprod, S_pprod, IL‘(n)) (23)
subject to:
Aphygst™ = bppys, 0<2™ <z, ESGz™)>e, n=1,...,N, (24)
SC_consistency(sppmd, 1:(”)) =0, n=1,...,N, (25)

with optional risk measures (for example CVaR) included by replacing the sample average with an appropriate
risk functional.

For sequential decision making and adaptation to other strategic participants, the Al agents can use reinforce-
ment learning and multi agent reinforcement learning techniques [36, 37, 38|. In a value based RL formulation,
an agent with state z; (including prices, asset states and on chain information) and action a; (for example
adjusting bids or storage schedules) learns an action value function

T
T—t
>
T=t

Q(%;%) =E

T, at] ; (26)
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where r, is a reward derived from u

porod and v € (0,1] is a discount factor. A standard temporal difference
update with learning rate « is

Qui1(xe, ar) = Qulwe, ar) + 04(7} +ymax Qt(wr41,a") — Qu(t, at))- (27)

Policy gradient and actor critic methods parameterise a policy mp(a | ) and update parameters 6 along estimated
performance gradients [36]. In the multi agent setting, several producer side agents and external participants co
evolve their policies; practical algorithms approximate equilibrium or no regret behaviour rather than solving
(12) in closed form [37, 38]. The DAG based ledger provides the shared, time stamped data stream of actions,
outcomes and ESG indicators on which these learning procedures condition.

4.7 Automated market makers in the proposed market design

Automated market makers (AMMs) and constant-function market makers (CFMMSs) provide a programmable
alternative to traditional limit-order books. In both cases, liquidity is pooled in a smart contract and prices are
quoted as a deterministic function of current pool balances rather than via explicit order matching [39, 40, 41].
An AMM or CFMM smart contract holds reserves of one or more assets and enforces a pricing rule through an
invariant of the form

F(R) =k, (28)

where R is the vector of pool reserves, F' is a predefined function and k is a constant. Trades adjust the reserves
while keeping (28) satisfied, and the marginal price of one asset in terms of another is determined by the gradient
of F' at the current reserve vector |40, 41]. This mechanism can be implemented entirely as on-ledger logic and
executed without an order book.

A widely used AMM design is the constant-product model, where the pool holds reserves X and Y of two assets
(for example an energy-linked token and a settlement token) and maintains the invariant

XY =k, (29)

for some constant k£ > 0 [42, 43]. A trade that adds AX units of asset X to the pool and removes AY units of
asset Y must satisfy
(X +AX)(Y — AY) =k, (30)

so that the invariant (29) remains unchanged. The marginal price of X in terms of Y is given by the reserve
ratio Yy

Pxy = X (31)
which adjusts endogenously as trades change the pool composition. Constant-product AMMSs are a special case
of the CFMM framework in (28) with F(R) = XY, and serve as the baseline mechanism on which more advanced
CFMM designs, such as constant-sum, hybrid and concentrated-liquidity models, build [42, 41].

Beyond the constant-product case, CFMMs specify more general invariants of the form (28) with R = (Ry, ..., Ry)
and F a smooth function [40, 41]. For an infinitesimal trade that increases reserve R; and decreases reserve R
while preserving (28), the marginal price of asset i in terms of asset j follows from the total differential

d
S Ryar, =0 = Byr) = - 0Lk (32)
— ORy

dR; = OF/OR;’

Constant-sum, hybrid and stable-swap designs correspond to particular choices of F' that stabilise prices for
tightly correlated assets, while concentrated-liquidity CFMMs, such as Uniswap v3, define F' piecewise over
price intervals and restrict non-zero liquidity to selected ranges [42, 41|. This increases capital efficiency and
allows fine-grained shaping of price response at the expense of more complex inventory, fee and risk management.

9
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From the perspective of the multi-agent Al system implementing the AMM /CFMM participant p*™™, the choice
of pricing rule introduces additional decision variables and state dimensions. The data/state agent must track
not only pool reserves R and recent order flow but also CFMM parameters, such as segment boundaries and
weights in a concentrated-liquidity design. The pricing and liquidity-management agent treats these parameters
as controllable variables ™™ that influence the invariant F'(-; #¢"™™) and hence the price function (32). Its task
is to adapt #°™™ and fee levels ©m,z+ based on forecasts of order flow and volatility in order to improve its payoff
upamm (5, ) while respecting inventory and ESG constraints. In a learning-based implementation, this agent’s
action space consists of discrete or continuous updates to #°™™ and ©m,zt, and its state includes the reserve
vector R, the derived price sensitivities in (32), and ESG-related indicators, all supplied by the data/state and
ESG agents.

{AMM /CFMM market participant}

amin
p

'

[Pricing & liquidity-management agent}

— -~

A

Data / state agent | Forecasting agent B~ ESG / compliance agent

! DAG-based ledger

| | External signals
' (trades, pool state, contracts, ESG metadata) !

(order flow, grid & market data)

Figure 2: Ontology of the AMM/CFMM-side multi-agent AI system. The AMM/CFMM participant p*™™ is imple-
mented by software agents in distinct roles. The DAG-based ledger acts as the primary source of truth for trades, pool
state, contracts and ESG metadata, complemented by external system and market signals.

After specifying the AMM /CFMM pricing rules and their implications for the multi-agent Al system, we sum-
marise the internal structure of the AMM /CFMM participant in terms of agent roles and data flows, as shown
in Fig. 2.

4.8 Implications for energy trading practice

The proposed architecture treats energy and related ESG attributes as tokenised products that are traded
through automated market makers on a decentralised DAG-based ledger. Physical production and consumption
remain in the power system, while token flows represent contractual claims on energy delivery and ESG char-
acteristics such as origin, emissions intensity or certification status. Producers, suppliers and other participants
interact through specialised Al agents that observe IIoT measurements, forecasts and market data, and that
submit orders or liquidity updates to AMM and CFMM pools.

On the producer side, decision agents coordinate unit commitment, storage operation and procurement or sale
of energy tokens. Their policies take into account physical constraints, portfolio positions and ESG-related
objectives or obligations. On the market side, AMM and CFMM pools provide continuous pricing and liquidity
for differentiated energy products. The ledger records trades, pool states and ESG attestations in an immutable
structure that can be queried by compliance agents and external stakeholders. The overall trading arrangement
therefore links operational decisions in industrial energy systems, decentralised price formation for ESG-tagged
energy and verifiable tracking of environmental attributes.

This trading arrangement changes the role and incentives of market participants. Producers face a richer

10
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product space, since they can sell energy in forms that differ by delivery profile, location and ESG attributes,
and they can choose how much liquidity to provide to AMM pools rather than only submitting discrete orders to
centralised auctions or brokers. Algorithmic decision agents internalise a wider set of constraints and objectives,
which can lead to more systematic exploitation of flexibility, for example through coordinated use of storage and
demand-side management.

Consumers and retailers can express preferences not just over price and time of delivery, but also over ESG
properties of the purchased energy. Their agents can trade continuously in small increments, rebalance positions
as new information arrives and adjust portfolios in response to updated ESG constraints or disclosure require-
ments. Liquidity provision through AMM pools gives them a transparent rule for price formation, and makes
the cost of specific ESG preferences explicit in the marginal price of the corresponding tokens.

For system operators and regulators, the architecture provides more granular data on physical and contractual
positions. The ledger and its ESG tracking layer produce machine-readable histories of production, transfer and
consumption that can be audited by compliance agents. At the same time, this creates new requirements for
validation of on-ledger data against physical measurements and for supervision of algorithmic trading strategies
implemented by decision agents. Governance arrangements become more important, since platform rules, pool
parameters and admissible agent behaviours shape both market outcomes and the credibility of ESG claims.

Conventional electricity trading in many jurisdictions relies on a combination of centralised day-ahead auctions,
continuous intraday order book trading and bilateral over-the-counter contracts, cleared through recognised
counterparties. Products are typically standardised by delivery period and location, while ESG attributes are
handled through separate certificate schemes. Trading decisions are made by human traders supported by
analytics tools, and contract data are stored in proprietary systems, with only aggregated information visible to
the wider market.

In contrast, the proposed architecture integrates energy and ESG attributes into a single token space and uses
AMM and CFMM pools for price formation and liquidity. Price adjustment is continuous and endogenous to
pool flows, rather than the result of periodic auctions or order book matching. Market access is mediated by
AT agents that operate on shared state and contract data, which reduces manual intervention and enables faster
reactions to system changes. Settlement and position management occur directly on the ledger, which reduces
reconciliation overhead but introduces new forms of operational and cyber risk.

The architecture does not eliminate existing exchanges and bilateral contracts. Instead, it can be viewed as an
additional layer that tokenises positions and ESG attributes and that provides continuous trading and hedging
possibilities between established market time frames. Producers and consumers can still use day-ahead and
intraday markets as reference and can calibrate AMM pool parameters to align with external price signals. The
main differences are the degree of automation in decision making, the integration of ESG tracking into the core
trading process and the use of a decentralised ledger and AMM mechanism for contract management and price
discovery.

5 Discussion and outlook

5.1 Alignment between decentralised incentives and system-level objectives

The proposed architecture combines individual participant payoffs, the system-level objective (11), the market
game (12) and AMM/CFMM pricing rules into a single interacting system. A central question is whether Nash
equilibria of the market game are aligned with the weighted welfare function W (s, z) that aggregates stakeholder
utilities and ESG penalties. In the current formulation, each participant p € P maximises its own payoff (10),
while W (s, z) is a conceptual benchmark for regulators, platform operators and governance bodies.

Alignment depends on several design choices. The weighting parameters wy and Ag, Ag, Ag in (11) encode a policy
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stance on the trade-off between economic outcomes and ESG performance. At the same time, ESG penalties
and rewards enter directly into participant payoffs through I',,, which influences the set of best responses and
thus the Nash equilibria (12). If penalties are too weak or poorly targeted, equilibria may remain economically
efficient in a narrow sense while still violating desired ESG outcomes. If penalties are too strong or mis-specified,
equilibria may shift towards strategies that satisfy formal ESG metrics but create hidden risks for reliability or
long-term investment.

The multi-agent Al layer provides an instrument to steer this alignment. Decision and ESG agents implement
the payoff structure in operational policies rather than in static contracts. This permits regulators or platform
operators to update ESG-related terms in I', and corresponding constraints without redesigning the entire
market. It also creates a need for robust governance, since changes in policies or ESG weightings propagate
through learned strategies and may induce transitions between qualitatively different equilibria. The architecture
shifts part of the regulatory challenge from designing once-off rules to managing an evolving set of algorithmic
incentives.

5.2 Interplay between AMM design, physical constraints and ESG tracking

The AMM and CEFMM layer, expressed through the invariant F'(R) = k in (28) and its special cases such as (29)
and (30), provides a rule-based mapping from order flow to prices. This mapping interacts with both physical
constraints and ESG tracking. In a traditional market, the link between physical scarcity and prices is mediated
by centralised auctions, order books and operator decisions. Here, the link is partly delegated to an on-ledger
pricing function that reacts mechanically to changes in pool reserves.

This delegation has concrete implications. Pool design determines how price sensitivity varies with inventory in
the pool and thus shapes the risk of large price swings for illiquid ESG-differentiated products. Constant-product
pools penalise trades that move reserves towards extremes, which provides an implicit liquidity risk premium
for large orders. For energy products with strong physical coupling across locations and time periods, such
penalties can amplify local scarcity signals if pool composition reflects network conditions. If pool composition
drifts away from physically motivated ratios, prices may signal artificial scarcity or abundance, which then feeds
back into producer and consumer agent decisions.

The DAG-based ledger closes a loop between physical events, ESG tracking and pricing. IIoT data and ESG
attestations flow into state agents, update on-ledger records and change the effective eligibility of tokens for
ESG-sensitive pools. Pool reserves thus depend on both trading strategies and the validity of ESG tags. In turn,
prices influence incentives to invest in low-emission assets, flexibility and data quality. This creates a coupled
system where data integrity, physical operations and token liquidity must be considered together. AMM design
becomes an instrument not only for managing financial liquidity but also for stabilising the interaction between
physical and ESG constraints.

5.3 Overall formulation of the architecture
From a design perspective, the architecture can be summarised by an optimisation problem that captures the

intended relationship between decentralised strategies, physical feasibility, ledger dynamics and AMM pricing.
Let s = (sp)pep denote the joint strategy profile, and let z(s), L(s) and R(L(s)) denote the induced physical
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state, ledger state and AMM reserve vectors. A compact formulation of the design goal is

max W (s, z(s))

s.t. z(s) € Aphys,
L(S) € /Yledger, (33)

F(R(L(s))) = k,

s satisfies the Nash conditions (12).

The first two constraints express physical and ledger-level feasibility, including network limits, device constraints
and basic consistency of token flows. The third constraint enforces the AMM or CFMM invariant that defines
how prices adjust to changes in reserves. The final condition expresses the requirement that the implemented
strategies form a Nash equilibrium under the given market rules and payoffs.

In practice, no single decision-maker solves (33) directly. The problem instead serves as a conceptual reference
for mechanism design. Platform operators choose the function F', pool parameters, admissible strategy sets
and ESG weightings with the aim that the resulting Nash equilibria approximate the maximisers of W. The
multi-agent Al layer then learns and adapts strategies within these constraints. This formulation highlights that
architecture and governance choices are inseparable from equilibrium outcomes, and that redesigning AMM rules
or ESG penalties amounts to changing the feasible set and objective in (33).

5.4 Limitations and directions for further work

The conceptual framework abstracts from several layers of complexity that would matter in deployment. First,
the description of strategies s, and payoffs in (10) and (12) hides rich temporal structure. Real participants
operate under multi-period contracts, ramping constraints, evolving ESG regulation and learning dynamics of
Al agents. A more detailed model would represent the architecture as a stochastic dynamic game in which
policies map observable states to actions and where the ledger and AMM states enter explicitly into the state
vector.

Second, the model treats ESG indicators F/, S and G as well-defined functions of states and actions. In practice,
measurement and verification of ESG performance rely on heterogeneous data sources, protocols and certifiers.
Inconsistent or low-quality data can undermine the effectiveness of penalties and rewards. The architecture
assumes that data and attestations that reach the ledger are trustworthy enough to serve as inputs for decision
agents. Research on detection of manipulation, cross-checking with independent measurements and design of
ESG metrics that are robust to strategic behaviour becomes central in such a setting.

Third, the AMM specification in (28) and its constant-product special case are stylised representations of liquidity
provision. Energy markets involve correlated risks across time, space and ESG attributes that may require richer
pool structures, such as multi-dimensional reserves, time-coupled invariants or hybrid designs that combine order
books and CFMMSs. Studying how such designs propagate into participant risk exposures, equilibrium prices
and system-level indicators is a natural next step.

Finally, the multi-agent AI layer introduces its own class of risks. Decision agents optimise with respect to
modelled payoffs and constraints, which may omit rare events, structural breaks or complex failure modes in
power systems and markets. Safety considerations then require constraints on admissible policies, monitoring
of agent behaviour and mechanisms for human intervention in exceptional situations. Simulation environments
that couple detailed power system models, market rules, AMM dynamics and learning agents would provide a
test bed for such safety concepts and for the calibration of ESG-related incentives.

The outlook of this architecture is shaped by these limitations and opportunities. The combination of on-ledger
AMM-based trading, ESG tracking and multi-agent Al decision-making opens a design space in which financial,
physical and sustainability objectives can be treated jointly. At the same time, this design space transfers part of
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the traditional work of human traders, regulators and system operators into the choice of algorithms, incentives
and governance for autonomous agents. Future work will need to explore this space systematically, with a focus
on concrete deployment settings, regulatory constraints and empirical evidence from pilot implementations.
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